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Abstract
The subject of the paper is to investigate the coupling phenomena of magnetic and non-uniform
temperature fields in ferrofluids. The coupling creates a special kind of mass transfer and an
inhomogeneous concentration of ferrofluid arises especially near bodies, where higher field
gradients are present. Particular attention is paid to the oriented mass transfer, i.e. the
magnitude and direction of ferrofluid flux with respect to the temperature gradient and magnetic
field. Quantitatively, oriented phoretic transport can be characterized by the magnetic Soret
coefficient and osmotic pressure difference. The problem is solved using two-dimensional (2D)
numerical simulations for the periodic structure of the bodies. Special attention is paid to the
magnetic bulk force as the driving force.

1. Introduction

Experimental observations show that the presence of a
temperature gradient and magnetic field creates a notable sep-
aration of ferrofluid in a system divided by a grid [1]. Separa-
tion of ferrofluid occurs also without the presence of magnetic
field due to other (thermal expansion, surface tension) effects
of colloidal particles, leading to conventional thermodiffusion
or the so-called Soret effect [6], where the ferrofluid particles
predominantly move to lower temperatures. Our aim here is to
discuss in more detail the ferrofluid convection and subsequent
separation by the action of the magnetic field force, resulting
in the magnetic Soret effect, whereas other mechanisms, such
as gravitational sedimentation, are neglected. Various types of
directed mass transfer around bodies due to thermal, electric,
magnetic perturbations near them are discussed in [4]. The
presence of phoretic transport there is explained by inhomo-
geneous fields near the bodies creating interfacial forces. The
phoretic transport in magnetic fluid due to magnetic field can
be explained in a similar manner, as will be described later.
Knowledge about directed mass transfer in ferrofluid due to
magnetic force is still insufficient and different opinions about
the magnitude and even the direction of the flow exist. There-
fore, detailed descriptions of heat and mass transfer processes
are required [2]. Analytical estimations are possible only in the
simplest cases, e.g. ferrofluid convection around a sphere [5].

The heat and mass transfer processes here are analysed
numerically by a two-dimensional model (2D) in order

to estimate the role of convection around micron size
bodies. As a particular example, a grid consisting of
a large number of equidistantly spaced non-magnetic or
magnetic cylinders is considered. Such a system is shown
in figure 1. The temperature gradient is applied in the
x-direction while cylinders of the grid are placed along the
y-axis. The magnetic field can be oriented arbitrarily but
we are particularly interested in magnetic field oriented either
in x or y directions. The orientation of magnetic field is
very important as it can even invert the direction of phoretic
transport. Due to significant convective exchange far from the
grid the distributions of temperature and concentration of the
ferrofluid are approximately homogeneous far from the grid
but significant gradients of concentration and temperature are
possible close to the grid. As the characteristic Lewis number
is much higher than 1 the concentration boundary layer in
reality could be smaller than the temperature boundary layer.
The possible break up of the periodical symmetry is neglected.
Non-uniform magnetization of ferrofluid surrounding each
cylinder creates a body force in the ferrofluid and subsequent
microconvection. Therefore, distributions of temperature,
magnetic field, concentration, and velocity have to be obtained
for a correct description of the microconvection.

2. Equations describing microconvection

The convective heat transfer near the grid is neglected as
the characteristic Peclet numbers are very small: typically
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Figure 1. Schematic shape of the grid in the system surrounded by
ferrofluid.

10−4–10−2. Therefore, stationary temperature distribution is
only required ∇ · (λ∇T ) = 0. The analytical solution for one
cylinder in ferrofluid with homogeneous heat conductivity of
ferrofluid is:

T = T0 +
(
∂T

∂x

)
0

x

(
1 + r 2

0

r 2
Kλ

)
, (1)

where ( ∂T
∂x )0 is the temperature gradient far from a cylinder

with radius r0, Kλ = λe−λi
λe+λi

. Because the stationary flow and
magnetodiffusion does not necessary converge in the direction
of temperature gradient, as tested by analysis and calculations,
the area with inhomogeneous temperature is chosen to be
finite: −l ′/2 � x � l ′/2 and l ′ < l. Therefore, it is assumed
that the temperature is T1 at x < −l ′/2 and T = T2 at x > l ′/2.

Magnetic field intensity H is calculated by the gradient
of the scalar magnetic potential �: H = ∇� . Requiring
divergence free magnetic induction one obtains ∇ · (μ∇�) =
0. The particular solutions are analogous to those of
the temperature field if the relative magnetic permeability
μ in the ferrofluid is homogeneous. However, the
magnetic permeability depends on magnetic field, ferrofluid
concentration, and temperature. The last one can give the
oriented convection along the temperature gradient or in the
opposite direction. We use the Langevin equation to estimate
the relative magnetic susceptibility χ :

χ = c
Ms

H
L(ξ), L(ξ) = 1

tanh ξ
− 1

ξ
,

ξ = Vpμ0 Ms H

kBT
,

(2)

where Ms is saturated magnetization, Vp the volume of
the ferroparticle, kB the Boltzmann constant, c the volume
fraction of ferrofluid. The dependence on temperature is not
straightforward because the size of the particle and saturated
magnetization are also temperature dependent. Therefore,
we will use the experimentally obtained dependence of
magnetization on temperature:

μ = 1 + c
Ms

H0
L(ξ0)+ 1

H0

dM

dT
(T − T0),

dM

dT
= −Ac.

(3)

Thus, the magnetic susceptibility is calculated by the Langevin
equation with experimentally observed slope of susceptibility
on temperature characterized by parameter A, which works
well in the required range of temperatures ≈15–30 ◦C.
Magnetic force density usually is approximated by the Kelvin
formula f = μ0M∇H = 1

2μ0χ∇H 2. If magnetic
susceptibility varies linearly with temperature as in (3) then
the curl of magnetic force around the cylinder is

∇ × f = 2μ0 H 2
0

r 2
0

r 6
Kμ

(
∂χ

∂x

)
0

×
[

r 3 sin(3ϕ − 2ϕ0)

− Kμr 2
0 r sin ϕ − Kλr

2
0

(
Kμ

r 2
0

r
sinϕ + r sin(ϕ − 2ϕ0)

)]
,

(4)

where ϕ0 is the angle between the magnetic field and
temperature gradient, Kμ = μe−μi

μe+μi
. There exists also a

Helmholtz [3] representation of magnetic force instead of
the Kelvin one which could change the description of the
ferrofluid at high concentrations. Recently, there has been
some controversy [7] about the role of the Helmholtz force.
A later article by Engel [8] showed that experiments do not
necessarily invalidate the Kelvin force. Consequently, the
Kelvin formulation of magnetic force will be used in the
current studies. Gravitational force is usually lower than the
magnetic force for particles with diameters lower than 10 nm
and is neglected.

Magnetic force acting on ferrofluid particles drives the
fluid and causes a redistribution of ferrofluid concentration.
Incompressible fluid flow is calculated in potential formulation
with velocity potential ψ and vorticity ω in the 2D case

∂tω + (v · ∇)ω = 1

ρ
(−∇ × (∇ × (ηω))+ (∇ × f)) , (5)

ω = ∇ × v, v = ∇ × ψ. (6)

Typically, the resulting Reynolds numbers for the given system
with respect to grid elements are small (Re � 10) resulting in
laminar behaviour of the fluid flow. The analytical solution of
velocity potential in the asymptotic limit for one cylinder and
infinite ferrofluid according to (4) is

ψ = μ0 H 2
0

32η
Kμ

(
∂χ

∂x

)
0

×
[

r

(
1 − r 2

0

r 2

)2

×
(

sin(3ϕ − 2ϕ0)− sinϕ

3
KμKλ

)

−
(

r 2

r 2
0

− 1 − ln
r 2

r 2
0

)
× 2r 2

0

r

(
Kμ sinϕ

+ Kλ sin(ϕ − 2ϕ0)
)]

(7)

with six vortexes around the cylinder. The velocity does not
decay with the distance from the cylinder, i.e. flow of ferrofluid
occurs in all the area with inhomogeneous temperature.
Therefore, the area with a temperature gradient in the real
case should be bounded as before. As the velocity is periodic
along the grid in the system represented in figure 1, a constant
difference of velocity potential exists between both sides:
ψz |y=h2 − ψz |y=−h2 = const . The constant is obtained either
by setting the total flow of fluid through the system to zero,
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Figure 2. Stationary flow in ferrofluid with c0 = 0.05 around the
cylinder. Magnetic field B = 0.0375 T is oriented along the
temperature gradient.

which yields const = 0, or by setting the pressure difference
between boundaries x = ±l/2. For the boundary conditions at
x = ±l/2 it is assumed that the tangential velocity component
∂xψ and the normal vorticity gradient ∂xω are zero at these
boundaries.

Because the magnetic force acts on nanoscale ferroparti-
cles of the fluid, the concentration of them is no longer homo-
geneous [9]. Moreover, the distribution of ferrofluid concen-
tration c (volume fraction of ferroparticles) is important to de-
scribe the oriented drift of ferroparticles, i.e. the Soret effect.
The distribution of ferroparticles satisfies the mass conserva-
tion law ∂c

∂ t + ∇ · j = 0. If the ferroparticles are spherical
and with equal radius rp then the ferroparticle flux in Stokes’
formulation is

j = vc − D∇c + D
Vp

kT
f, D = kT

6πrpη
, (8)

where flux j contains convection, diffusion, and drift terms,
respectively. The boundary conditions at x = ±l/2 are
chosen in such a way that reservoirs with intense mixing are
present on both sides. Absence of deposition is assumed
near the bodies, i.e. jn = 0. Experiments, however, show
that deposition is possible near the bodies and it should
be discussed in future studies. The Soret coefficient is
proportional to the ferroparticle flux through a vertical cross-
section of the system [2]:

St (x, t) = − 1

D(T0)Sc0
(
∂T
∂x

)
0

∫
x

jx dS, (9)

where c0 is the average concentration of ferrofluid.
The non-magnetic Soret effect can be included by adding

a term to the drift part S0 Dc∇T of the flux (8), where S0 is
the usual Soret coefficient. However, this term is omitted in
numerical studies in order to see the effect of inhomogeneous
magnetization.

Figure 3. Stationary distribution of concentration corresponding to
figure 2.

3. Ferrofluid flow around cylindrical bodies

Let us consider the flow of ferrofluid through the grid in
figure 1. At first, magnetic field oriented parallel to the
temperature gradient is considered. The parameters are
assumed as in the previous subsection with the exception that
magnetic field strength is B = 0.05 T and initial concentration
c = 0.04. In addition, we set the radius of the cylinder to
be r0 = 10 μm; vertical spacing h = 40 μm; temperature
difference T = 10 K is applied on the spatial distance
l ′ = 0.4 mm; heat conductivities are λe = 0.2 W m−1 K−1

and λi = 10 W m−1 K−1 for ferrofluid and body, respectively;
density of ferrofluid ρ = 1000 kg m−3. Reservoirs with
homogeneous concentrations are attached at both sides |x | >
l/2 of the system as shown in figure 1. The length of each
reservoir l∗ is set equal to l.

As can be seen from figure 2, the flow of ferrofluid
converges well in the horizontal direction, i.e. the intensity
of flow drops considerably in the dimensions of the system.
Nevertheless, the concentration and pressure varies in all the
area with a temperature gradient. Figure 3 shows that the area
with higher concentration is located in the grid plane along
the y-axis, similarly to that in [2]. If the magnetic field is
oriented along the y-axis then the areas with higher and lower
concentrations would be opposite.

Figure 4 shows the development of the concentration
difference between both sides of the grid. One notes that
the ferroparticles are transferred towards higher temperatures
in the case of magnetic field orientation along the x-axis,
i.e. concentration in the right reservoir c2 becomes higher than
in the left c1 and the resulting magnetic Soret coefficient is
negative. That can also be seen in figure 5, where one can
see that the resulting force far from the cylinder inside the
area with a temperature gradient is directed towards increasing
temperatures (decreasing μ). Various factors that can influence
the relaxation time and stationary difference of concentrations
with respect to the default case are examined in figure 4: a
grid of double the thickness gives lower magnetic field, lower
temperature and lower concentration. Curve 1 corresponds
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Figure 4. Development of concentration difference on both sides of
the grid x = ±l/2 with elliptic elements at B = 0.05 T. (1) A grid
twice as thick, (2) default parameters, (3) B = 0.025 T,
(4) infinitesimally thin grid elements, (5)T = 5 K, (6) c0 = 0.02.

Figure 5. Stationary distribution of magnetic force density f (scaled).

to the case where the cylinder is twice as thick in the
x-direction. As can be seen, it only slightly increases the effect
of separation. This suggests that the influence of the body
in total transfer of ferrofluid is quite small. More influence
comes from the inhomogeneous magnetic intensity H far from
the cylinder, as will be shown later. Curve 3 corresponds
to twice as small magnetic field B = 0.25 T. Then the
stationary difference of concentrations becomes smaller and
the characteristic relaxation time longer. The case with reduced
temperature difference T = 5 K is plotted by curve 5,
where c∞ is approximately halved while the characteristic
relaxation time remains the same. Curve 6 corresponds to a
halved concentration c0 = 0.025, where c∞ is more than
halved and the relaxation time is only slightly longer. Curve 4
represents the case where the grid is infinitesimally thin but the
transfer of ferroparticles towards higher temperatures is still

Figure 6. (1), (3) Stationary difference of concentration and pressure
without change of magnetic field; (2), (4) with change of magnetic
field.

present. This is because magnetic induction B is fixed at both
sides of the system and equal whereas magnetic intensity H is
changing due to change of magnetic permeability μ. Then the
Kelvin force equals

f ≈ χB2

μμ0
∇ 1

μ
(10)

far from the cylinder, where B2 is nearly constant according to
the given boundary conditions (∇ · B = 0). We can conclude
that effects of the microconvection around the grid and the
oriented magnetic force in the inhomogeneously magnetized
magnetic fluid account for the transfer of ferroparticles towards
higher temperatures in the present formulation of boundary
conditions and force. The time development of concentration
difference on both sides of the system from the initial state
in figure 4 can be described fairly well by an exponential
law c(t) ≈ c∞(1 − e−αt ), where c∞ is the stationary
difference of concentrations. The Soret coefficient is equal to

St = 1

2

∂c

∂ t

l∗l ′

Dc0T
. (11)

As the Soret coefficient characterizes the initial stage of
the process, the derivative is ∂c/∂ t|t=0 ≈ c∞α. The
coefficients c∞ and α can be estimated from (8) and (10):

c∞ ≈
A

Ms
c0T

1+χ0

ξ0χ0
+ L(ξ0)

,

∂c

∂ t

∣∣∣∣
t=0

≈ 2πr 2
p Msμ0

9η(1 + χ0)

c2
0 L(ξ0)A

T
l′

l∗ + l−l′
2 + l′

8

.

(12)

The resulting osmotic pressure differences are given in figure 6.
The stationary state is achieved with an order of days,
depending on the size of the system around 1 cm as the directed
ferroparticle flow is relatively weak through the layer of l =
0.46 mm. The process agrees quite well with experiments
carried out in our Institute of Physics, giving the right value
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Figure 7. Stationary difference of concentrations on both sides of the
grid at a perpendicular orientation of the magnetic field to the
temperature gradient.

of pressure difference. That of course depends on how we
set the size parameters l and l ′ of the concentration and
temperature boundary layers, respectively. Figure 6 shows
that equilibrium concentration and pressure difference between
both sides becomes saturated at B ≈ 0.05 T. The change
of magnetic field distribution is very important considering
non-magnetic bodies, as can be seen in figure 6 especially
at magnetic field induction over 0.03 T when the difference
of concentrations starts to saturate. The curve 4 in figure 6
agrees quite well with (12) where the direct absence of a grid
is neglected.

Figure 7 shows the development of the concentration
difference in the case of magnetic field B = 0.05 T oriented
perpendicularly with respect to the temperature gradient. In
this case the ferroparticles are transferred towards lower
temperatures but the quantitative effect is approximately half
that in the parallel case. The problem of magnetic force far
from the grid is absent since inhomogeneous magnetization
does not create bulk magnetic force in this orientation of
magnetic field.

4. Conclusions

Interesting coupling phenomena of magnetic, concentration,
and flow fields take place in the case of a ferrofluid around
a non-magnetic body in the presence of both a magnetic field
and temperature gradient. Particular attention should be paid

in considering the Soret effect and osmotic pressure difference
in order to strictly maintain the mass conservation laws,
e.g. solving the system by finite volume methods. The problem
related to the convergence of flow far from the grid is solved
by setting the area with a temperature gradient to be finite. The
calculations show that, from the viewpoint of the model, the
directed transfer of ferroparticles is caused not only by the
separating grid but also by the magnetic bulk force. If the
magnetic field is oriented parallel to the temperature gradient
then both these effects add to the transfer of ferroparticles
towards higher temperatures. The effect takes the opposite sign
in a perpendicular orientation of the magnetic field with respect
to temperature gradient. The main problems in the model that
should be solved are a correct description of the temperature
and concentration boundary layers, having different scales, and
an unambiguous description of the resulting magnetic force far
from the grid.
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